
10 03/2013

M
A
LW

A
R

E
R

EV
ER

SE
 E

N
G

iN
EE

R
iN

G

Android Reverse
Engineering:
an introductory guide to malware analysis
The Android malware has followed an exponential growth rate
in recent years, in parallel with the degree of penetration of this
system in different markets. Currently, over 90% of the threats to
mobile devices have Android as a main target. This scenario has led
to the demand for professionals with a very specific knowledge on
this platform.

The software reverse engineering, accord-
ing to Chikofsky and Cross [1], refers to the
process of analyzing a system to identify its

components and their interrelationships, and cre-
ate representations of the system in another form
or a higher level of abstraction. Thus, the purpose
of reverse engineering is not to make changes or
to replicate the system under analysis, but to un-
derstand how it was built.

The best way to tackle a problem of reverse engi-
neering is to consider how we would have built the
system in question. Obviously, the success of the
mission depends largely on the level of experience
we have in building similar systems to the analyzed
system. Moreover, knowledge of the right tools we
will help in this process.

In this article we describe tools and techniques
that will allow us, through a reverse engineering
process, identify malware in Android applications.

To execute the process of reverse engineering
over an application, we can use two types of tech-
niques: static analysis and / or dynamic analysis.
Both techniques are complementary, and the use
of both provides a more complete and efficient vi-
sion on the application being discussed. In this ar-
ticle we focus only on static analysis phase, ie, we
will focus on the analysis of the application by ana-
lyzing its source code, and without actually running
the application.

Static analysis of Android application starts from
the moment you have your APK file (Application
PacKage). APK is the extension used to distribute
and install applications for the Android platform.
The APK format is similar to the JAR (Java AR-

chive) format and contains the packaged files re-
quired by the application.

If we unzip an APK file (for example, an APK
corresponding to the application “Iron Man 3
Live Wallpaper” available at Play Store: https://
play.google.com/store/apps/details?id=cellfish.
ironman3wp&hl=en):

$ unzip cellfish.ironman3wp.apk

typically we will find the following resources: Figure 1.
An interesting resource is the “AndroidManifest.

xml” file. In this XML file, all specifications of our ap-
plication are declared, including Activities, Intents,
Hardware, Services, Permissions required by the
application [2], etc. Note that this is a binary XML

Figure 1. Typical Structure of an APK File

https://play.google.com/store/apps/details?id=cellfish.ironman3wp&hl=en
https://play.google.com/store/apps/details?id=cellfish.ironman3wp&hl=en
https://play.google.com/store/apps/details?id=cellfish.ironman3wp&hl=en

www.hakin9.org/en 11

file, so if you want to read easily its contents you
should convert it to a human-readable XML format.

The “AXMLPrinter2.jar” tool performs this task:

$ java –jar AXMLPrinter2.jar AndroidManifest.xml >
AndroidManifest.xml.txt

$ less AndroidManifest.xml.txt

Another important resource that we find in any
APK is the “classes.dex” file. This is a formatted
DEX (Dalvik EXecutable) file containing the byte-
codes that understands the DVM (Dalvik Virtual
Machine). Dalvik is the virtual machine that runs
applications and code written in Java, created
specifically for the Android platform.

Since we want to analyze the source code of the
application, we need to convert the DEX format to
Java source code. To do this we will pass through
an intermediate state. We will convert the DEX
format to the compiled Java code (.class). Many
tools exist for this purpose. One of the most used
is “dex2jar”.

This tool takes as input the APK file and gener-
ates a JAR file as output:

$ /vad/tools/dex2jar/d2j-dex2jar.sh cellfish.
ironman3wp.apk

dex2jar cellfish.ironman3wp.apk -> cellfish.
ironman3wp-dex2jar.jar

Now we only need to decompile the Java classes
to get the source code. To do this, we can use the
“JD-GUI” tool (Figure 3):

$ /vad/tools/jd-gui/jdgui cellfish.ironman3wp-
dex2jar.jar

One of the first observations we draw from de-
compile the Java code in our example, is the fact
that it has been used some code obfuscation tool
that complicates the process of analyzing the ap-
plication. The most common tools are “ProGuard”
[3] and “DexGuard” [4].

Although these tools are commonly used to pro-
vide an additional layer of security and hinder the
reverse engineering process, these applications
can also be used in order to optimize the code and
get a APK of a smaller size (eg, optimizing the by-
tecode eliminating unused instructions, renaming
the class name, fields, and methods using short
meaningless names, etc..).

In our example, we can deduce that the develop-
ers have used “ProGuard” (open source tool) be-
cause we can observe that some of the features
offered by “DexGuard” are not been implemented
in the analyzed code:

• The strings are not encrypted
• The code associated with logging functionality

are not removed
• Does not exist encrypted files in the /assets re-

source
• There are no classes that have been entirety

encrypted

Once we have access to source code, we can try
to better understand how the application is built.
“JD-GUI” allows us to save the entire application
source code in a ZIP file, so you can perform new
operations on this code using other tools. For ex-
ample, to search for key terms on the entire code
using the “grep” utility from the command line.

Figure 2. Contents of an AndroidManifest.xml File

Figure 3. Viewing the Source Code Decompiled with JD-GUI

12 03/2013

M
A
LW

A
R

E
R

EV
ER

SE
 E

N
G

iN
EE

R
iN

G

Although “JD-GUI” allows us to browse the entire
hierarchy of objects in a comfortable manner, we
generally find applications where there is a large
number of Java classes to analyze, so we need to
rely on other tools to facilitate the understanding of
the code .

Following the aim that defined Chikofsky and
Cross in reverse engineering, which is none other
than that of understanding how the application is
built, there is a tool that will help us greatly in this
regard: “Understand”.

According to the website itself, “Understand” is a
static analysis tool for maintaining, measuring and
analyzing critical or large code bases. Although is
not purely a security tool (do not expect to use it as
a vulnerability scanner), it helps us to understand
the application code, which is our goal (Figure 4).

There are several online tools that have a similar
purpose. For example, “Dexter” gives us detailed
information about the application we want to ana-
lyze. As with any online service, our analysis is ex-
posed to third party who can get to make use of
our work, so we should always keep this in mind.

With the “Dexter” tool, is a simple as registering,
create a project and upload the APK that we want
to analyze. After the analysis, we can view infor-
mation such as the following:

• Package dependency graph
• List of classes
• List of strings used by the application
• Defined permissions and used permissions
• Activities, Services, Broadcast Receivers, Con-

tent Providers
• Statistical data (percentage of obfuscated

packages, use of internal versus external pack-
ages, classes per package, etc.).

Possibly, the power of this tool lies in its ease of
use (all actions are performed through the brows-
er) and navigating the class diagram and applica-
tion objects (Figure 5).

Malware Identification in the Play Store
It’s not a secret that Google’s official store (the Play
Store, which we have received an update in late
April this year), hosts malware. Now, how do we
identify those malicious applications? How do we
know what they are really doing? Let us then how
to answer these questions.

The techniques for introducing malware on a
mobile application can be summarized in the fol-
lowing:

• Exploit any vulnerability in the web server host-
ing the official store (typically, for example, tak-
ing advantage of a XSS vulnerability)

• Enter malware in an application available at
the official store (most users trust it and can
be downloaded by a large number of potential
users)

• Install not malicious applications that at some
point installs malware (eg, include additional
levels with malware into a widespread game)

• Use alternatives to official stores to post appli-
cations containing malware (usually, offering
free applications that are not free in the official
store)

When we talk about to introduce malware into an
application, we can refer to two different scenarios:

• The published application contains code that
exploits a vulnerability in the device, or

• The published application does not exploit any
vulnerability, but contains code that can per-
form malicious actions and, therefore, the us-
er is warned of the permissions required by the
application as a step prior to installation.

In this article we focus on the second case: appli-
cation with malicious code that exploits the user’s
trust.

Figure 4. Understand Showing the UML Class Diagram of the
Application

Figure 5. Initial View of an Application Analysis with Dexter

www.hakin9.org/en 13

How to Identify Malicious Applications on
the Play Store?
A malicious application includes code that per-
forms some action not expected by the user. For
example, if a user downloads from the official
store an application to change the wallpaper of
his device, the user do not expect that this app
can read his emails, can make phone calls or
send SMS messages to premium accounts, for
example.

A tool that allows us to quickly assess the exis-
tence of malicious code is “VirusTotal” [5]. For ex-
ample, if we use the service offered by “VirusTotal”
to analyze the APK of the “Wallpaper & Background
Browser” application of the “Start-App” company,
and available in the Play Store (https://play.google.
com/store/apps/details?id=com.startapp.wallpa-
per.browser), we note that 12 of the 46 supported
antivirus by this service, detect malicious code in
the application. Exactly, the following:

• AhnLab-V3. Result: Android-PUP/Plankton
• AVG. Result: Android/Plankton
• Commtouch. Result: AndroidOS/Plankton.A.gen!

Eldorado
• Comodo. Result: UnclassifiedMalware
• DrWeb. Result: Adware.Startapp.5.origin
• ESET-NOD32. Result: a variant of Android/

Plankton.I
• F-Prot. Result: AndroidOS/Plankton.D
• F-Secure. Result: Application:Android/Counter-

clank
• Fortinet. Result: Android/Plankton.A!tr
• Sophos. Result: Andr/NewyearL-B
• TrendMicro-HouseCall. Result: TROJ_GEN.

F47V0830
• VIPRE. Result: Trojan.AndroidOS.Generic.A

(Figure 6)

Here’s another example. If we search at the Play
Store the “Cool Live Wallpaper” application (https://
play.google.com/store/apps/details?id=com.own-
skin.diy_01zti0rso7rb), developed by “Brankhox”,
we find the following information:

Package

com.ownskin.diy_01zti0rso7rb

Permissions

android.permission.INTERNET
android.permission.READ_PHONE_STATE
android.permission.ACCESS_NETWORK_STATE
android.permission.WRITE_EXTERNAL_STORAGE

android.permission.READ_SMS
android.permission.READ_CONTACTS
com.google.android.gm.permission.READ_GMAIL
android.permission.GET_ACCOUNTS
android.permission.ACCESS_WIFI_STATE

Potential malicious activities

• The application has the ability to read text
messages (SMS or MMS)

• The application has the ability to read mail
from Gmail

• The application has the ability to access user
contacts

The questions we must ask is why and for what
purpose the application need these permissions,
like reading my email or access my contacts? It’s
really so intrusive as it sounds?

We will use some of the tools described above,
to reverse engineer this application and see if it is
using some of the more sensitive permissions that
it requests.

Step 1: Get the APK file of the application
There are multiple ways to obtain an APK:

• Downloading an unofficial APK
• Google: we can use the Google search en-

gine to locate the APK.
• Unofficial repositories: we can find the APK

in several alternative markets [6] or other re-
positories like 4shared.com, apkboys.com,
apkmania.co, aplicacionesapk.com, aptoide.
com, flipkart.asia, etc.

• Downloading an official APK
• Real APK Leecher [7]: This tool allows us to

download the official APK for some applica-
tions.

• SaveAPK [8]: This tool (required to have
previously installed the „OI File Manager”

Figure 6. Result of a VirusTotal Analysis on an APK

https://play.google.com/store/apps/details?id=com.startapp.wallpaper.browser
https://play.google.com/store/apps/details?id=com.startapp.wallpaper.browser
https://play.google.com/store/apps/details?id=com.startapp.wallpaper.browser
https://play.google.com/store/apps/details?id=com.ownskin.diy_01zti0rso7rb
https://play.google.com/store/apps/details?id=com.ownskin.diy_01zti0rso7rb
https://play.google.com/store/apps/details?id=com.ownskin.diy_01zti0rso7rb

14 03/2013

M
A
LW

A
R

E
R

EV
ER

SE
 E

N
G

iN
EE

R
iN

G

application) available on the Play Store, lets
us generate the APK if we have previously
installed application on the device.

• Astro File Manager [9]: This tool is available
in the Play Store, and we can get the APK if
we have previously installed the application
on the device. When performing a backup
of the application, the APK is stored in the
directory that is defined for backup.

Given the risk involved in dealing with malware,
if we choose the option to download the APK
existing in the Play Store from a previous instal-
lation of the application, we should use prefer-
ably an emulator [10] or a device of our test lab
(Figure 7).

Step 2: Convert the application from the
Dalvik Executable format (.dex) to java
classes (.class)
The idea is to have the application code into a
human-readable format. In this case, we use the
“dex2jar” tool to convert the format Android to the
Java format:

$ /vad/tools/d2j-dex2jar.sh com.ownskin.
diy_01zti0rso7rb.apk

dex2jar com.ownskin.diy_01zti0rso7rb.apk ->
 com.ownskin.diy_01zti0rso7rb-dex2jar.jar

Step 3: Decompile the java code
Using a Java decompiler (like “JD-GUI”), we can
obtain the Java source code from the .class files.

In our case, we will choose a fast track. “JD-GUI”
allows us to save the entire application source
code in a ZIP file. We’ll keep this file as “com.own-
skin.diy_01zti0rso7rb-dex2jar.src.zip”, and unzip it
to perform a manual scan.

We note that there are 353 Java source files:

$ find /vad/lab/Android/com.ownskin.diy_01zti0r
so7rb-dex2jar.src/ -type f | wc -l

353

Step 4: Find malicious code in the application
We can now search in any resource of the appli-
cation to identify strings that may be susceptible
of being used for malicious purposes. For exam-
ple, we have previously identified that this appli-
cation sought permission to read SMS messages. Figure 7. Downloading an APK with APK Real Leecher

listing 1. Finding Malicious Code in the Application

$ cd /vad/lab/Android/com.ownskin.diy_01zti0rso7rb-dex2jar.src/
$ grep -i sms -r *
com/ownskin/diy_01zti0rso7rb/ht.java:import android.telephony.SmsMessage;
com/ownskin/diy_01zti0rso7rb/ht.java: SmsMessage[] arrayOfSmsMessage = new

SmsMessage[arrayOfObject.length];
com/ownskin/diy_01zti0rso7rb/ht.java: arrayOfSmsMessage[0] = SmsMessage.createFromPdu((byte[])

arrayOfObject[0]);
com/ownskin/diy_01zti0rso7rb/ht.java: hs.a(this.a, arrayOfSmsMessage[0].getOriginatingAd-

dress());
com/ownskin/diy_01zti0rso7rb/ht.java: hs.c(this.a, arrayOfSmsMessage[0].getMessageBody());
com/ownskin/diy_01zti0rso7rb/hm.java: if (!”SMS_MMS”.equalsIgnoreCase(this.U))
com/ownskin/diy_01zti0rso7rb/hm.java: a(Uri.parse(“content://sms”));
com/ownskin/diy_01zti0rso7rb/hs.java: Uri localUri = Uri.parse(“content://sms”);
com/ownskin/diy_01zti0rso7rb/hs.java: this.P.l().registerReceiver(this.ac, new

IntentFilter(“android.provider.Telephony.SMS_RECEIVED”));

www.hakin9.org/en 15

Let’s see if the application actually use this per-
mission (Listing 1).

Using the “grep” command, we identified that the
following resources (Java classes) seem to contain
some code that allows read access to the user’s
SMS:

• com/ownskin/diy_01zti0rso7rb/hm.java
• com/ownskin/diy_01zti0rso7rb/hs.java
• com/ownskin/diy_01zti0rso7rb/ht.java

Let’s see the source code detail of these resourc-
es in JD-GUI:

• com/ownskin/diy_01zti0rso7rb/hm.java

…
if (!”SMS_MMS”.equalsIgnoreCase(this.U))
 break label89;
 a(Uri.parse(“content://sms”));
 a(Uri.parse(“content://mms”));
…

• com/ownskin/diy_01zti0rso7rb/hs.java
It creates a „localUri” object of the “Uri” class,
calling the “parse” method to be used in the
query to the Content Provider that allows to ac-
cess to the SMS inbox:

…
public static final Uri a = localUri;
public static final Uri b = Uri.

withAppendedPath(localUri, “inbox”);
…

static
 {
 Uri localUri = Uri.parse(“content://sms”);
 }

and registers a Receiver to be notified of the
received SMS:

…this.P.l().registerReceiver(this.ac,new
IntentFilter(“android.provider.
Telephony.SMS_RECEIVED”));

…• com/ownskin/diy_01zti0rso7rb/ht.java
This class implements a Broadcast Receiver.
This is simply an Android component that al-
lows the registered Receiver to be notified of
events produced in the system or in the appli-
cation itself.

In this case, the implemented Receiver is capa-
ble of receiving input SMS messages. And this
notification occurs before that the internal SMS
management application receive the SMS mes-
sages. This scenario is used by some malware,
for example, to perform some action and then
delete the received message before it is pro-
cessed by the messaging application and be de-
tected by the user.

In this example, when the user receives an SMS,
the application identify its source and read the mes-
sage, as shown in the following code: Listing 2.

As we can see (at this point, we can complete
the process of analysis of the application by a dy-
namic analysis of it), in fact, the application ac-
cesses our SMS messages. However, it’s im-

listing 2. When the User Receives an SMS, the Application Identify its Source and Read the Message

…
public final void onReceive(Context paramContext, Intent paramIntent)
 {
 Object[] arrayOfObject = (Object[])paramIntent.getExtras().get(“pdus”);
 SmsMessage[] arrayOfSmsMessage = new SmsMessage[arrayOfObject.length];
 if (arrayOfObject.length > 0)
 {
 arrayOfSmsMessage[0] = SmsMessage.createFromPdu((byte[])arrayOfObject[0]);
 hs.a(this.a, arrayOfSmsMessage[0].getOriginatingAddress());
 hs.b(this.a, go.a(this.a.P.l(), hs.a(this.a)));
 if ((hs.b(this.a) == null) || (hs.b(this.a).length() == 0))
 hs.b(this.a, hs.a(this.a));
 hs.c(this.a, arrayOfSmsMessage[0].getMessageBody());
 hs.c(this.a);
 }
 }
…

16 03/2013

M
A

LW
A

R
E

R
EV

ER
SE

 E
N

G
iN

EE
R

iN
G

portant to recall that we have accepted that the
application can perform these actions, because
we have accepted the permissions required and
the application has informed to us of this situation
prior to installation.

Similarly, we can verify as any application makes
use of the various permits requested, with particu-
lar attention to those that may affect our privacy or
which may result in a cost to us.

Some people sees no malware in this type of ap-
plications that take advantage of user trust, and
has been the subject of controversy on more than
one occasion. In any case, Google has decided to
remove applications from the Play Store that can
make an abuse of permits that these require to be
confirmed by users who wish to use them. That
does not mean, on the other hand, that there still
exist such applications in Google’s official store
(Table 1).

VICENTE AGuIlERA DIAZ
With over 10 years of professional ex-
perience in the security sector, Vicente
Aguilera Diaz is co-founder of Internet
Security Auditors (a Spanish firm spe-
cializing in security services), OWASP
Spain Chapter Leader, member of the
Technical Advisory Board of the Red-

Seguridad magazine, and member of the Jury of the IT
Security Awards organized by the RedSeguridad maga-
zine.
Vicente has collaborate in several open-source projects,
is a regular speaker at industry conferences and has
published several articles and vulnerabilities in special-
ized media. Vicente has the following certifications: CI-
SA, CISSP, CSSLP, PCI ASV, ITIL Foundation, CEH|I, ECSP|I,
OPSA and OPST.

Table 1. Static Analysis Tools for Android Applications

TOOL DESCRIPTION URL
Dexter Static android application analysis tool https://dexter.bluebox.com/

Androguard Analysis tool (.dex, .apk, .xml, .arsc) https://code.google.com/p/androguard/

smali/baksmali Assembler/disassembler (dex format) https://code.google.com/p/smali/

apktool Decode/rebuild resources https://code.google.com/p/android-apktool/

JD-GUI Java decompiler http://java.decompiler.free.fr/?q=jdgui

Dedexer Disassembler tool for DEX files http://dedexer.sourceforge.net/

AXMLPrinter2.jar Prints XML document from binary XML http://code.google.com/p/android4me/

dex2jar Analysis tool (.dex and .class files) https://code.google.com/p/dex2jar/

apkinspector Analysis functions https://code.google.com/p/apkinspector/

Understand Source code analysis and metrics http://www.scitools.com/

Agnitio Security code review http://sourceforge.net/projects/agnitiotool/

References
[1] “Reverse Engineering and Design Recovery: A Taxonomy”. Elliot J. Chikofsky, James H. Cross. http://win.ua.ac.be/~lore/Rese-

arch/Chikofsky1990-Taxonomy.pdf
[2] “Security features provided by Android” http://developer.android.com/guide/topics/security/permissions.html
[3] ProGuard Tool http://developer.android.com/tools/help/proguard.html
[4] DexGuard Tool http://www.saikoa.com/dexguard
[5] VirusTotal http://www.virustotal.com
[7] Alternative markets to the Play Store http://alternativeto.net/software/android-market/
[8] Real APK Leecher https://code.google.com/p/real-apk-leecher/
[9] SaveAPK https://play.google.com/store/apps/details?id=org.mariotaku.saveapk&hl=en
[10] Astro File Manager https://play.google.com/store/apps/details?id=com.metago.astro&hl=en
[11] “Using the Android Emulator” http://developer.android.com/tools/devices/emulator.html

http://win.ua.ac.be/~lore/Research/Chikofsky1990-Taxonomy.pdf
http://win.ua.ac.be/~lore/Research/Chikofsky1990-Taxonomy.pdf
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/tools/help/proguard.html
http://www.saikoa.com/dexguard
http://www.virustotal.com
http://alternativeto.net/software/android-market/
https://code.google.com/p/real-apk-leecher/
https://play.google.com/store/apps/details?id=org.mariotaku.saveapk&hl=en
https://play.google.com/store/apps/details?id=com.metago.astro&hl=en
http://developer.android.com/tools/devices/emulator.html

	Previouse Page:
	Page 10:
	Page 12:
	Page 14:
	Page 16:

	Go To Next Page:
	Page 10:
	Page 12:
	Page 14:
	Page 16:

	Previouse Page 1:
	Page 11:
	Page 13:
	Page 15:

	Go To Next Page 1:
	Page 11:
	Page 13:
	Page 15:

